Speaker 1 : Nicholas Pizzo (Scripps Institution of Oceanography, University of California, San Diego) Date & Time : January 21st (Fri.), 2022 / 9:00-9:40AM (Tokyo (JST)) (--> January 20th (Thu.), 2022 / 4:00-4:40PM (San Diego (PDT)) ) Title : Particle description of the interaction between wave packets and point vortices Abstract : This talk explores an idealized model of the ocean surface in which widely separated surface-wave packets and point vortices interact in two horizontal dimensions. We start with a Lagrangian which, in its general form, depends on the fields of wave action, wave phase, stream function and two additional fields that label and track the vertical component of vorticity. By assuming that the wave action and vorticity are confined to infinitesimally small, widely separated regions of the flow, we obtain model equations that are analogous to, but significantly more general than, the familiar system consisting solely of point vortices. We analyse stable and unstable harmonic solutions, solutions in which wave packets eventually coincide with point vortices (violating our assumptions), and solutions in which the wave vector eventually blows up. Additionally, we show that a wave packet induces a net drift on a passive vortex in the direction of wave propagation which is equivalent to Darwin drift. Generalizing our analysis to many wave packets and vortices, we examine the influence of wave packets on an otherwise unstable vortex street and show analytically, according to linear stability analysis, that the wave-packet-induced drift can stabilize the vortex street. The system is then numerically integrated for long times and an example is shown in which the configuration remains stable, which may be particularly relevant for the upper ocean.